Adhesives and Bonding Tools To obtain good measurement results, the strain gage must be bonded completely to the measuring object. Thus, it is important to select a suitable adhesive for the materials of measuring object and gage base and for measuring requirements. | | Models | Types | Operating Temperat
Range (°C) | iure Major Applicable Materials | Curing Requirements | |----------------------------------|--------|--|----------------------------------|--|--| | CEMENT | CC-33A | Instantaneous
adhesive
cured at
normal
temperature | -196 to 120 | Metals (Steel, stainless steel, copper, aluminum alloys A 1050, A 2024, etc.) Plastics (acrylate, vinyl chloride, nylon, etc.) Composite materials (CFRP, GFRP, printed board, etc.) Rubber | Apply finger pressure (100 to 300 kPa) for 15 to 60 seconds. Then, leave the gage as it is for 1 hour. The finger pressure application time differs depending on temperature and humidity conditions. The lower the temperature and humidity, the longer the finger pressure application time required. | | With an CEMENT | CC-35 | Instantaneous
adhesive
cured at
normal
temperature | -30 to 120 | ●Concrete
●Mortar
●Lumber | Apply finger pressure (100 to 300 kPa) for 30 to 60 seconds. Then, leave the gage as it is for 1 hour or more. The finger pressure application time differs depending on temperature and humidity conditions. The lower the temperature and humidity, the longer the finger pressure application time required. | | CEMENT | CC-36 | Instantaneous
adhesive
cured at
normal
temperature | -30 to 100 | Metals (Steel, stainless steel, copper, aluminum alloys A 1050, A 2024, A 7075, magnesium alloy, etc.) Plastics (acrylate, vinyl chloride, nylon, polypropylene, etc.) Composite materials (CFRP, GFRP, PCB, etc.) Concrete Mortar Lumber Rubber | Apply finger pressure (100 to 300 kPa) for 30 to 60 seconds. Then, leave the gage as it is for 1 hour or more. The finger pressure application time differs depending on temperature and humidity conditions. The lower the temperature and humidity, the longer the finger pressure application time required. | | 3 | EP-270 | Cured at
room
temperature | -269 to 30 | ●Metals (Stainless steel,
aluminum alloy, etc.) | Apply pressure
(50±20 kPa) for 24 hours at
approx. 25°C | | EP.340 | EP-340 | Cured at
normal
temperature
or by heating | -55 to 150 | •Metals (Stainless steel, aluminum alloy, etc.) | Apply pressure (100±50 kPa) for 24 hours at approx. 25°C or for 2 hours at 80°C. Pressing is possible with tape. | | - AMERICAN STREET | EP-34B | Cured at
normal
temperature
or by heating | -55 to 200 | Metals (Steel, stainless steel, copper, aluminum alloy, etc.) Plastics (acrylate, PVC, etc.) Composite materials (CFRP, GFRP, printed board, etc.) | Apply pressure (30 to 50 kPa) for 24 hours at approx. 25°C or for 2 hours at 80°C. Pressing is possible with tape. | | | EP-180 | Cured at
normal
temperature
or by heating | -50 to 100 | Metals (Steel, stainless steel, copper, aluminum alloy, etc.) Plastics (acrylate, PVC, etc.) | Apply pressure (50 to 100 kPa) for
48 hours at 40°C
3 hours at 40°C
If used in bolt gages, then refer to
the bolt gage instruction manual | | | PC-600 | Cured by
heating | -269 to 250 | Metals (Steel, stainless steel, copper, aluminum alloy, etc.) | Apply Pressure (150 to 300 kPa)
for 1 hour at 80°C,
2 hours at 13 0°C and then, 2 hours
at 150°C | | strain gage
content
Pri-32 | PI-32 | Cured by
heating | -296 to 350 | Metals (Steel, stainless steel, copper, aluminum alloy, etc.) | Apply pressure (200 to 500 kPa) for 1 hour at 100°C, 2 hours at 200°C and then, heat for 2 hours at the operating temperature with the pressure removed. If it is difficult to heat to 200°C, 2 h at 200°C may be changed to 5 h at 160°C with all other conditions followed. | | Ingredients | Capacity | Features | Major Applicable Gages | |--|--|---|---| | 1 type of
cyanoacrylate
liquid | 2g×1
or
2g×5 | Suitable for bonding general-purpose gages, such as KFG and KFR, which are used for general stress measurement at normal temperature of 20 to 80°C. Quick curing time and stable bonding of various materials in a wide range of temperature and humidity ranges. Quick curing ensures smooth bonding works. Enables measurement in approximately 1 hour from bonding. | KFG, KFGT, KFR, KFW,
KFRP, KFRS, KFP, KFML,
KSP, KSN (excl. E5)
KSPH, KSPL, KFL, KFN,
KFS, KFF, KCH, KV | | 1 type of
cyanoacrylate
liquid | 2g×1
or
2g×5 | High viscosity makes it suitable for bonding to porous materials such
lumber and concrete. Suitable for bonding a gage to porous materials such as concrete for
general stress measurement at normal temperature
of 20 to 80°C. | KFG, KFGT, KFR,
KC, KFRP, KFP | | 1 type of
cyanoacrylate
liquid | 2g×1
or
2g×5 | Suitable for bonding a high-elongation gage such as KFEM and KFEL at normal temperature of 20 to 80°C. Suitable for bonding to hard-to bond materials such as aluminum alloy (A7075) and magnesium alloy. High peeling resistance, high impact resistance and less aging deterioration of bonding strength | KFEM, KFEL, KFG, KFGT,
KFR, KFW, KFWS, KFRP,
KFRS, KFP, KFML, KSP,
KSN (excl. E5), KSPH,
KSPL, KFF, KV | | 2 types of
liquid mixed, | 50 g
Main agent:
25 g
Curing agent:
25 g | •Suitable for bonding gages for strain measurement at very low temperature. | KFL | | 2 types of
liquid mixed, | 30 g
Main agent:
6 g x 4
Curing agent:
1.5 g x 4 | •Suitable for bonding gages for strain measurement at middle temperature. | KFG, KFR, KFGT
KFF, KFS | | 2 types of
epoxy liquid
mixed | 30 g
Main agent:
5.6 g x 4
Curing agent:
2.1 g x 4 | Suitable for strain measurement at middle temperature and for bonding
gages for transducers. | KFRP, KFP, KFH | | 2 types of
epoxy liquid
mixed | 30 g
Main agent:
18 g
Curing agent:
12 g | •Low viscosity makes it suitable for bonding gages (KFG-C20) embeddable in bolts. | KFG (C20),
KFW, KFWS,
KFF | | 1 heating type
of phenol liquid | 100 g | •Suitable for strain measurement at low, middle and high temperature and for bonding gages for transducers. | KFG, KFR, KFH
KFL, KFN, KFS | | 1 heating type
of polyimide
liquid | 20 g | •Suitable for bonding gages for strain measurement at high temperature. | KFU, KFH |